19 research outputs found

    Snow observations from Arctic Ocean Soviet drifting stations: legacy and new directions

    Get PDF
    The Arctic Ocean is one of the most rapidly changing regions on the planet. Its warming climate has driven reductions in the region's sea ice cover which are likely unprecedented in recent history, with many of the environmental impacts being mediated by the overlying snow cover. As well as impacting energetic and material fluxes, the snow cover also obscures the underlying ice from direct satellite observation. While the radar waves emitted from satellite-mounted altimeters have some ability to penetrate snow cover, an understanding of snow geophysical properties remains critical to remote sensing of sea ice thickness. The paucity of Arctic Ocean snow observations was recently identified as a key knowledge gap and uncertainty by the Intergovernmental Panel on Climate Change's Special Report on Oceans and Cryosphere in a Changing Climate. This thesis aims to address that knowledge gap. Between 1937 and 1991 the Soviet Union operated a series of 31 crewed stations which drifted around the Arctic Ocean. During their operation, scientists took detailed observations of the atmospheric conditions, the physical oceanography, and the snow cover on the sea ice. This thesis contains four projects that feature these observations. The first two consider a well known snow depth and density climatology that was compiled from observations at the stations between 1954 & 1991. Specifically, Chapter two considers the role of seasonally evolving snow density in sea ice thickness retrievals, and Chapter three considers the impact of the climatological treatment itself on satellite estimates of sea ice thickness variability and trends. Chapter four presents a statistical model for the sub-kilometre distribution of snow depth on Arctic sea ice through analysis of snow depth transect data. Chapter five then compares the characteristics of snow melt onset at the stations with satellite observations and results from a recently developed model

    ESD Ideas: Arctic amplification's contribution to breaches of the Paris Agreement

    Get PDF
    The Arctic is warming at almost 4 times the global average rate. Here we reframe this amplified Arctic warming in terms of global climate ambition to show that without Arctic amplification, the world would breach the Paris Agreement's 1.5 and 2 ∘C limits 5 and 8 years later, respectively. We also find the Arctic to be a disproportionate contributor to uncertainty in the timing of breaches. The outsized influence of Arctic warming on global climate targets highlights the need for better modelling and monitoring of Arctic change

    Airborne investigation of quasi-specular Ku-band radar scattering for satellite altimetry over snow-covered Arctic sea ice

    Get PDF
    Surface-based Ku-band radar altimetry investigations indicate the radar signal is typically backscattered from well above the snow-sea ice interface. However, this would induce a bias in satellite altimeter sea ice thickness retrievals not reflected by buoy validation. Our study presents a mechanism to potentially explain this paradox: probabilistic quasi-specular radar scattering from the snow-ice interface. We introduce the theory for this mechanism before identifying it in airborne Ku-band radar observations collected over landfast first year Arctic sea ice near Eureka, Canada, in spring 2016. Based on SAR data, this study area likely represents level first year sea ice across the Arctic. Radar backscatter from the snow and ice interfaces were estimated by co-aligning laser scanner and radar observations with in situ measurements. On average, 4-5 times more radar power was scattered from the snow-ice than the air-snow interface over first-year ice. However, return power varied by up to 20 dB between consecutive radar echoes, particularly from the snow-ice interface, depending on local slope and roughness. Measured laser-radar snow depths were more accurate when radar returns were specular, but there was no systematic bias between airborne and in situ snow depths. The probability and strength of quasi-specular returns depend on the measuring height above and slope distribution of sea ice, so these findings have implications for satellite altimetry snow depth and freeboard estimates. This mechanism could explain the apparent differences in Ku-band radar penetration into snow on sea ice when observed from the range of a surface-, airborne- or satellite-based sensor

    Brief communication:Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates

    Get PDF
    Pan-Arctic sea ice thickness has been monitored over recent decades by satellite radar altimeters such as CryoSat-2, which emits Ku-band radar waves that are assumed in publicly available sea ice thickness products to penetrate overlying snow and scatter from the ice–snow interface. Here we examine two expressions for the time delay caused by slower radar wave propagation through the snow layer and related assumptions concerning the time evolution of overlying snow density. Two conventional treatments introduce systematic underestimates of up to 15 cm into ice thickness estimates and up to 10 cm into thermodynamic growth rate estimates over multi-year ice in winter. Correcting these biases would impact a wide variety of model projections, calibrations, validations and reanalyses

    Synoptic variability in satellite altimeter‐derived radar freeboard of Arctic sea ice

    Get PDF
    Satellite observations of sea ice freeboard are integral to the estimation of sea ice thickness. It is commonly assumed that radar pulses from satellite-mounted Ku-band altimeters penetrate through the snow and reflect from the snow-ice interface. We would therefore expect a negative correlation between snow accumulation and radar freeboard measurements, as increased snow loading weighs the ice floe down. In this study we produce daily-resolution radar freeboard products from the CryoSat-2 and Sentinel-3 altimeters via a recently developed optimal interpolation scheme. We find statistically significant (p < 0.05) positive correlations between radar freeboard anomalies and modelled snow accumulation. This suggests that, in the period after snowfall, radar pulses are not scattering from the snow-ice interface as commonly assumed. Our results offer satellite-based evidence of winter Ku-band radar scattering above the snow-ice interface, violating a key assumption in sea ice thickness retrievals

    Synoptic Variability in Satellite Altimeter-Derived Radar Freeboard of Arctic Sea Ice

    Get PDF
    Satellite observations of sea ice freeboard are integral to the estimation of sea ice thickness. It is commonly assumed that radar pulses from satellite-mounted Ku-band altimeters penetrate through the snow and reflect from the snow-ice interface. We would therefore expect a negative correlation between snow accumulation and radar freeboard measurements, as increased snow loading weighs the ice floe down. In this study we produce daily resolution radar freeboard products from the CryoSat-2 and Sentinel-3 altimeters via a recently developed optimal interpolation scheme. We find statistically significant (p < 0.05) positive correlations between radar freeboard anomalies and modeled snow accumulation. This suggests that, in the period after snowfall, radar pulses are not scattering from the snow-ice interface as commonly assumed. Our results offer satellite-based evidence of winter Ku-band radar scattering above the snow-ice interface, violating a key assumption in sea ice thickness retrievals

    Sub-kilometre scale distribution of snow depth on Arctic sea ice from Soviet drifting stations

    Get PDF
    The sub-kilometre scale distribution of snow depth on Arctic sea ice impacts atmosphere-ice fluxes of energy and mass, and is of importance for satellite estimates of sea-ice thickness from both radar and lidar altimeters. While information about the mean of this distribution is increasingly available from modelling and remote sensing, the full distribution cannot yet be resolved. We analyse 33 539 snow depth measurements from 499 transects taken at Soviet drifting stations between 1955 and 1991 and derive a simple statistical distribution for snow depth over multi-year ice as a function of only the mean snow depth. We then evaluate this snow depth distribution against snow depth transects that span first-year ice to multiyear ice from the MOSAiC, SHEBA and AMSR-Ice field campaigns. Because the distribution can be generated using only the mean snow depth, it can be used in the downscaling of several existing snow depth products for use in flux modelling and altimetry studies

    A Lagrangian snow evolution system for sea ice applications (SnowModel-LG): Part II-analyses

    Get PDF
    Sea ice thickness is a critical variable, both as a climate indicator and for forecasting sea ice conditions on seasonal and longer time scales. The lack of snow depth and density information is a major source of uncertainty in current thickness retrievals from laser and radar altimetry. In response to this data gap, a new Lagrangian snow evolution model (SnowModel‐LG) was developed to simulate snow depth, density, and grain size on a pan‐Arctic scale, daily from August 1980 through July 2018. In this study, we evaluate the results from this effort against various data sets, including those from Operation IceBridge, ice mass balance buoys, snow buoys, MagnaProbes, and rulers. We further compare modeled snow depths forced by two reanalysis products (Modern Era Retrospective‐Analysis for Research and Applications, Version 2 and European Centre for Medium‐Range Weather Forecasts Reanalysis, 5th Generation) with those from two historical climatologies, as well as estimates over first‐year and multiyear ice from satellite passive microwave observations. Our results highlight the ability of our SnowModel‐LG implementation to capture observed spatial and seasonal variability in Arctic snow depth and density, as well as the sensitivity to the choice of reanalysis system used to simulate snow depths. Since 1980, snow depth is found to decrease throughout most regions of the Arctic Ocean, with statistically significant trends during the cold season months in the marginal ice zones around the Arctic Ocean and slight positive trends north of Greenland and near the pole

    Retrieval of Snow Depth on Arctic Sea Ice From Surface‐Based, Polarimetric, Dual‐Frequency Radar Altimetry

    Get PDF
    Snow depth on sea ice is an Essential Climate Variable and a major source of uncertainty in satellite altimetry‐derived sea ice thickness. During winter of the MOSAiC Expedition, the “KuKa” dual‐frequency, fully polarized Ku‐ and Ka‐band radar was deployed in “stare” nadir‐looking mode to investigate the possibility of combining these two frequencies to retrieve snow depth. Three approaches were investigated: dual‐frequency, dual‐polarization and waveform shape, and compared to independent snow depth measurements. Novel dual‐polarization approaches yielded r2 values up to 0.77. Mean snow depths agreed within 1 cm, even for data sub‐banded to CryoSat‐2 SIRAL and SARAL AltiKa bandwidths. Snow depths from co‐polarized dual‐frequency approaches were at least a factor of four too small and had a r2 0.15 or lower. r2 for waveform shape techniques reached 0.72 but depths were underestimated. Snow depth retrievals using polarimetric information or waveform shape may therefore be possible from airborne/satellite radar altimeters

    Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice

    Get PDF
    Wind-driven redistribution of snow on sea ice alters its topography and microstructure, yet the impact of these processes on radar signatures is poorly understood. Here, we examine the effects of snow redistribution over Arctic sea ice on radar waveforms and backscatter signatures obtained from a surface-based, fully polarimetric Ka- and Ku-band radar at incidence angles between 0∘ (nadir) and 50∘. Two wind events in November 2019 during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition are evaluated. During both events, changes in Ka- and Ku-band radar waveforms and backscatter coefficients at nadir are observed, coincident with surface topography changes measured by a terrestrial laser scanner. At both frequencies, redistribution caused snow densification at the surface and the uppermost layers, increasing the scattering at the air–snow interface at nadir and its prevalence as the dominant radar scattering surface. The waveform data also detected the presence of previous air–snow interfaces, buried beneath newly deposited snow. The additional scattering from previous air–snow interfaces could therefore affect the range retrieved from Ka- and Ku-band satellite altimeters. With increasing incidence angles, the relative scattering contribution of the air–snow interface decreases, and the snow–sea ice interface scattering increases. Relative to pre-wind event conditions, azimuthally averaged backscatter at nadir during the wind events increases by up to 8 dB (Ka-band) and 5 dB (Ku-band). Results show substantial backscatter variability within the scan area at all incidence angles and polarizations, in response to increasing wind speed and changes in wind direction. Our results show that snow redistribution and wind compaction need to be accounted for to interpret airborne and satellite radar measurements of snow-covered sea ice
    corecore